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We analyzed global gene expression patterns of 91 human hepatocellular carcinomas
(HCCs) to define the molecular characteristics of the tumors and to test the prognostic value
of the expression profiles. Unsupervised classification methods revealed two distinctive
subclasses of HCC that are highly associated with patient survival. This association was
validated via 5 independent supervised learning methods. We also identified the genes most
strongly associated with survival by using the Cox proportional hazards survival analysis.
This approach identified a limited number of genes that accurately predicted the length of
survival and provides new molecular insight into the pathogenesis of HCC. Tumors from the
low survival subclass have strong cell proliferation and antiapoptosis gene expression signa-
tures. In addition, the low survival subclass displayed higher expression of genes involved in
ubiquitination and histone modification, suggesting an etiological involvement of these
processes in accelerating the progression of HCC. In conclusion, the biological differences
identified in the HCC subclasses should provide an attractive source for the development of
therapeutic targets (e.g., HIF1a) for selective treatment of HCC patients. Supplementary
material for this article can be found on the HEPATOLOGY Web site (http://interscience.
wiley.com/jpages/0270-9139/suppmat/index.html). (HEPATOLOGY 2004;40:667–676.)

Hepatocellular carcinoma (HCC) is the fifth most
common cancer in the world, accounting for an
estimated 500,000 deaths annually.1 Although

HCC is prevalent in Southeast Asia and sub-Sahara Af-
rica, the incidence of HCC has doubled in the United
States over the past 25 years, and incidence and mortality
rates are likely to double over the next 10–20 years.2

Although much is known about both the cellular changes

that lead to HCC and the etiological agents responsible
for the majority of HCC cases (hepatitis B virus, hepatitis
C virus, alcohol), the molecular pathogenesis of HCC is
not well understood.3 Considerable efforts have been de-
voted to establishing a prognostic model for HCC by
using clinical information and pathological classification
to provide information at diagnosis on both survival and
treatment options.4–10 Although much progress has been
made (reviewed by Llovet et al.11), many issues still re-
main unresolved. For example, a staging system that reli-
ably separates patients with early HCC as well as
intermediate to advanced HCC into homogeneous
groups with respect to prognosis does not exist. This is
particularly important because the natural course of early
HCC is unknown and the natural progression of interme-
diate and advanced HCC are known to be quite hetero-
geneous.12 It therefore appears axiomatic that improving
the classification of HCC patients into groups with ho-
mogeneous prognosis would at least improve the applica-
tion of currently available treatment modalities and at
best provide new treatment strategies.

Recently, microarray technologies have been success-
fully used to predict clinical outcome and survival as well
as classify different types of cancer.13–15 These microarray
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technologies have also been applied in many studies to
define global gene expression patterns in primary human
HCC as well as HCC-derived cell lines16 in an attempt to
gain insight into the mechanisms of hepatocarcinogen-
esis. These studies have identified subgroups of HCC that
differ according to etiological factors,17 mutations of tu-
mor suppressor genes,18 rate of recurrence,19 and intrahe-
patic metastasis,20 as well as novel molecular markers for
HCC diagnosis.21 However, most of these studies identi-
fied genes that are associated with limited aspects of tu-
mor pathogenesis, and thus failed to create molecular
prognostic indices that could be applied to the HCC pa-
tient population in general.

In the present study, we investigated the possibility
that variations in gene expression in HCC obtained at
diagnosis would permit the identification of distinct sub-
classes of HCC patients with different prognoses. The
results revealed two subclasses of HCC patients character-
ized by significant differences in the length of survival. We
also identified expression profiles of a limited number of
genes that accurately predicted the length of survival. Our
data indicate that it is possible to use gene expression
patterns to accurately predict the clinical outcome of
HCC at the time of diagnosis.

Patients and Methods

Complementary DNA Microarrays. The Human
Array-Ready Oligo Set (Version 2.0) containing 70-mer
probes of 21,329 genes was obtained from Qiagen, Inc.
(Valencia, CA). Oligo microarrays were produced at the
Advanced Technology Center at the National Cancer In-
stitute.

Human Tissue Samples and Preparation of RNA.
Surgically removed normal livers (n � 18) from patients
with liver metastasis from colon cancers or from traffic
accident patients were retrieved from the tissue bank of
the Thomas E. Starzl Transplant Institute at the Univer-
sity of Pittsburgh Medical Center. One disease-free donor
liver unsuitable for transplantation was also used. Total
RNAs from the 19 normal livers were pooled and used as
a reference for all microarray experiments. Ninety-one
HCC tissues and 60 matched nontumor surrounding
liver tissues were obtained from 90 patients undergoing
partial hepatectomy as treatment for HCC. Tumor spec-
imens originated from China and Belgium. Tissue bank-
ing was approved by the Institutional Review Board of all
institutions. Total RNAs were isolated using the CsCl
density gradient centrifugation method.22

Microarray Experiments and Data Analysis.
Twenty micrograms of total RNA from tissues were used to
derive fluorescently (Cy5 or Cy3) labeled complementary

DNA. A reference complementary DNA was generated us-
ing total RNA from 19 normal livers. At least two hybridiza-
tions were performed for each tissue sample using a dye-swap
strategy to eliminate labeling bias of the fluorescent intensity
measurement. A detailed procedure for microarray experi-
mentation and data analysis is available in a supplementary
note on the HEPATOLOGY Web site (http://interscience.
wiley.com/jpages/0270-9139/suppmat/index.html).

Supplementary Data. Supplementary notes, figures,
and tables can be accessed on the HEPATOLOGY Web site
(http://interscience.wiley.com/jpages/0270-9139/suppmat/
index.html).

Results
We characterized gene expression profiles in 91 human

primary HCC and 60 matched nontumor surrounding
tissues (STs) using DNA microarrays. A hierarchical clus-
tering analysis based on Pearson correlation coefficients
was applied to all tissues on the basis of similarity in the
expression pattern over all genes (Fig. 1A). As expected, it
yielded two major clusters, one representing HCC tu-
mors, and the other representing nontumor STs, with a
few exceptions. Thus, the molecular configuration of
HCC can be readily distinguished from nontumor STs, as
has already been observed.18

Two Distinct Subclasses of HCC Revealed via
Hierarchical Clustering of Gene Expression Patterns
are Highly Associated With Survival of Patients.
Next, we attempted to identify subclasses of HCC solely
on the basis of gene expression patterns. Genes with an
expression ratio that has at least a twofold difference rel-
ative to the reference in at least 9 tumors were selected for
hierarchical analysis (4,187 gene features). Analysis of the
clustered data with the HCC revealed 2 distinctive sub-
types of gene expression patterns among 91 cases of HCC
(Fig. 1B), suggesting a degree of heterogeneity among
HCC gene expression profiles. Members of the 2 clusters
also resided in compact and easily separable three-dimen-
sional space when viewed by a three-dimensional multi-
dimensional scaling plot based on their overall similarity
of expression patterns (Supplementary Fig. 2), indicating
that the 2 subclasses identified with hierarchical clustering
are not due to artifacts from data processing. Having iden-
tified the 2 distinctive subclasses of HCC, we examined
the association of clusters with clinical data. The two clus-
ters showed weak associations with serum alpha fetopro-
tein (AFP) levels and Edmonson tumor grades. Cluster A
contained a higher percentage of AFP� (�300 ng/mL)
patients (62.5%) and Edmonson grade III tumors (77%),
while 42% and 50% of cluster B was AFP� and grade III,
respectively (Table 1). Significant association with the
clusters was only detectable in patient survival. The over-
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all survival time in cluster A (30.3 � 8.02 months) was
shorter than cluster B (83.7 � 10.3 months). As expected,
a Kaplan-Meier survival curve and a log-rank test indi-
cated poorer survival in cluster A patients (P � 1.0 �
10�4) when compared with cluster B (Fig. 1C). Thus, the
molecular differences between these 2 subclasses of HCC
were associated with a remarkable difference in the clini-
cal outcome of these patients.

It has been widely accepted that serum AFP levels are
significantly related to the survival of HCC patients;

higher levels of serum AFP indicate poorer survival.5,6,10

Among many clinical indicators of the HCC patients,
serum AFP levels (�300 ng/mL or less) only showed as-
sociation with survival with marginal significance (P �
.13) in our patient cohort (Fig. 1D). We determined
whether or not our molecular classification of HCC could
enhance the prognostic value of this clinical indicator pre-
viously used for prediction of survival. While the 2 sub-
classes of AFP� patients showed a marginal difference in
overall survival, AFP� patients in cluster A had a severely

Fig. 1. Hierarchical clustering
analysis. (A) Unsupervised hierarchi-
cal clustering of 91 HCC tumors and
60 matched surrounding nontumor
liver tissues separated the tissues
into two main groups: HCC tumors
and STs (see Supplementary Fig. 1
for details). (B) Hierarchical cluster-
ing of 91 HCC tumors only. Genes
with an expression ratio that had at
least a twofold difference relative to
reference in at least 9 tissues were
selected for hierarchical analysis
(4,187 gene features). The data are
presented in matrix format in which
rows represent the individual gene
and columns represent each tissue.
Each cell in the matrix represents
the expression level of a gene fea-
ture in an individual tissue. The red
and green color in cells reflect high
and low expression levels, respec-
tively, as indicated in the scale bar
(log2 transformed scale). (C)
Kaplan-Meier plot of overall survival
of HCC patients grouped on the ba-
sis of gene expression profiling. One
patient (HCC16) was excluded from
the data set due to death from sep-
tic shock after surgery. (D) Kaplan-
Meier plot of overall survival of HCC
patients grouped on the basis of
serum AFP levels (�300 ng/mL).
(E) Kaplan-Meier plot of overall sur-
vival of HCC patients grouped on the
basis of both gene expression pro-
filing and AFP levels in serum. HCC,
hepatocellular carcinoma; ST, sur-
rounding tissue; AFP, alpha
fetoprotein.
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diminished overall survival (Supplementary Fig. 3).
Moreover, when patients were subdivided into 4 groups
based on serum AFP levels and gene expression clusters,
AFP� patients in cluster A showed the worst overall sur-
vival among all patients (Fig. 1E).

Prediction of Survival With Gene Expression Pro-
files. We applied 5 different statistical methods to deter-
mine whether or not gene expression patterns could be
used to predict survival: linear discriminator analysis, sup-
port vector machines, nearest centroid, nearest neighbor,
and compound covariate predictor. Before the analysis, 2
tumor samples, HCC89-2 and HCC16, were excluded
from the data set because patient HCC16 died of septic
shock after surgery and samples from 2 separate tumors
were obtained from patient HCC89. In the absence of a
totally independent data set, we attempted to assess the
validation of our results and reproducibility of the test by
randomly dividing the HCC into 2 equal groups: the
training set (n � 45), which was used to develop the HCC
classifiers, and the validation set (n � 44), which was used
to evaluate the test. Briefly, we started to identify the most

differentially expressed genes between 2 clusters in the
training set. These genes were combined to form a series
of classifiers that estimate the probability that a particular
HCC belongs to cluster A or B. The number of genes in
the classifiers was optimized to minimize misclassification
errors during the “leave one out” cross-validation of the
tumors in the training set. When applied to the validation
set, all 5 models successfully separated poorer survival
patients (cluster A) from longer survival patients (cluster
B). All Kaplan-Meier survival curves and log-rank tests in
the validation set showed significant differences between
subclass A and B that were independently predicted using
the 5 classifier models (Fig. 2A–G). Moreover, when we
examined the predicted subclass memberships of the tu-
mors, only a few discrepancies were observed (Fig. 2H).
These results demonstrated not only strong association of
gene expression patterns with the survival of the patients
but also a robust reproducibility of these gene expression–
based predictors.

Survival Genes. Because the most striking feature of
the unsupervised analysis of the expression profiles was the
strong association with survival, we decided to apply super-
vised analysis of the genes whose expression is most strongly
associated with length of survival. The univariate Cox pro-
portional hazards model was used to assess the association of
the gene expression with the survival. Expression of 442 fea-
tures representing 406 unique genes (Supplementary Table
1) was highly correlated with length of survival with strong
statistical significance (P � .001). The outcome of hierarchi-
cal cluster analysis of the HCC with the 406 survival genes
was highly similar to the previous analysis with all the genes
(Fig. 3A). With few exceptions, cluster memberships of each
tumor remained the same in the 2 hierarchical cluster den-
drograms, highlighting again the robustness of the predicted
HCC subclasses and their strong association with length of
survival. We noted that survival genes were almost equally
divided into two groups, those whose expression is higher in
subclass A tumors (HA genes) and those whose expression is
higher in subclass B tumors (HB genes). When we catego-
rized the survival genes according to the Gene Ontology, the
biggest difference between HA genes and HB genes was ob-
served in genes associated with cell proliferation (Supple-
mentary Table 2). Of the HA survival genes, 45% belonged
to the cell growth and maintenance category, while only
19% of HB survival genes were in the same Gene Ontology
category, strongly suggesting that the HCCs in subclass A
grow faster than those in subclass B.

We next generated an averaged gene expression index
from HB genes to examine their predictive power. Pa-
tients were then ranked according to the average gene
expression level of tumors from the highest to the lowest
(Fig. 3B) and divided into two equal 50th percentiles.

Table 1. Clinical and Pathological Features of HCC Patients

Variable Cluster A Cluster B Total

No. of patients 40 50 90
Male 33 38 71
Female 7 12 19

Age
Mean 51.2 54 52.7
SD 11.2 13 12.2

AFP (�300 ng/mL)
� 25 21 46
� 13 25 38
NA 2 4 6

Etiology
HBV 29 23 52
HCV 2 5 7
HBV/HCV — 3 3
Alcohol — 5 5
HBV/Alcohol — 1 1
HCV/Alcohol — 1 1
Hereditary hemochromatosis 1 2 3
Wilson’s disease 1 1
NA 7 10 17

Edmonson grade
II 8 24 32
III 31 25 56
IV 1 1 2

Cirrhosis
� 21 24 45
� 19 26 45

Death 33 20 53
Survival (months)*

Mean 30.5 83.7 64.6
SE 8.02 10.3 8.53

Abbreviations: HBV, hepatitis B virus; HCV, hepatitis C virus; NA, not applicable.
*Mean and SE of survival time were estimated as described in supplementary

notes. See details in Supplementary Table 3.
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Kaplan-Meier plots and log-rank tests of overall patient
survival in the 2 divided groups revealed striking differ-
ences with strong statistical significance (P � 1.0 � 10�4)
(data not shown). Likewise, the average gene expression
index from HA genes produced similar results (Fig. 3C)
with comparable statistical significance (P � 1.0 � 10�5).
Most of the patients in cluster A and B were perhaps not
surprisingly well separated from each other in both 50th
percentile segmentations (Fig. 3B and 3C). Taken to-
gether with the previous 2 independent clustering analy-
ses and the cross-validation test of training and validation
data sets, these results further support the notion that a
distinct gene expression pattern predicts survival charac-
teristics of the 2 subclasses of the HCC patients.

Next, we employed a knowledge-based annotation of the
survival genes based on a public database search, because the
Gene Ontology Consortium term annotation of genes was
not sufficient to provide insight into the underlying biolog-
ical differences between the 2 subclasses of HCC. The sur-
vival genes fell within several biological groups (Table 2).
The cell proliferation group was the best predictor of an
unfavorable outcome of the disease, which is consistent with
previous analyses in human lymphomas.23 Expression of
typical cell proliferation markers such as PNCA and cell cycle

regulators such as CDK4, CCNB1, CCNA2, and CKS2 was
greater in subclass A than subclass B. Not surprisingly, many
genes that are expressed more in subclass A are antiapoptotic.
Recent studies have identified PTMA/ProT as an inhibitor of
apoptosome formation, the essential step for the final activa-
tion of the caspase-dependent cascade in the apoptotic path-
way,24 and have identified SET as an inhibitor of the
Granzyme A–induced caspase-independent pathway.25 SET
is also a subunit of the inhibitor of acetyltransferases complex
that regulates histone modification and gene expression.26

Significantly, PTMA has recently been shown also to be part
of the inhibitor of acetyltransferases complex,27 suggesting
their multiple roles in hepatocarcinogenesis. Genes involved
in prothrombin activation were expressed less in subclass A,
indicating impairment of liver function in this subclass.
Many of the genes with lower expression in subclass A were
liver-specific (data not shown), which is consistent with the
previous observation that poorly differentiated HCC tumors
have less favorable clinical outcomes.28 Higher expression of
genes involved in ubiquitination and sumoylation indicated
that accelerated cell proliferation in the poorer survival group
might be due to selective degradation of critical proteins,
including cell cycle inhibitors. Concomitant overexpression
of the histone H4 family with HRMT1L2 (H4-specific

Fig. 2. Survival analysis of out-
come of prediction in validation set.
(A) Kaplan-Meier plot of overall sur-
vival of HCC patients in validation
set classified by hierarchical cluster-
ing analysis. (B–G) Kaplan-Meier
plots of overall survival of HCC pa-
tients in validation set classified by
linear discriminator analysis, sup-
port vector machines, nearest cen-
troid, 3 nearest neighbor, 1 nearest
neighbor, and compound covariate
prediction models, respectively. (H)
Hierarchical clustering of 44 HCC
tissues in a validation set. Columns
represent each tissue and rows rep-
resent outcomes of various predic-
tion models as indicated. Each cell
represents memberships of tissues
when particular prediction model
was applied in a validation set. The
red and blue color in cells represent
clusters A and B, respectively.
HCA, hierarchical clustering analy-
sis; LDA, linear discriminator analy-
sis; SVM, support vector machines;
NC, nearest centroid; NN, nearest
neighbor; CCP, compound covariate
prediction.
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methyltransferase) in the poorer survival group of HCC may
indicate unidentified roles of the histone H4 family and their
modification in tumor development. Expression of HIF1a,
the master regulator of hypoxia induced gene expression,29

was enhanced in subclass A, while expression of ENGL2, a
negative regulator of HIF1a by prolyl hydroxylation,30 was
reduced (Fig. 3D). Both these changes dramatically enhance
HIF1a activity in tumor cells, which in turn provide a favor-
able environment for tumor growth.

Predicted biological features of each subgroup of HCC
based on gene expression patterns were further validated
using independent methods as described in the supple-
mentary notes.

Three Distinctive Gene Expression Patterns in
HCC and ST. To gain additional insight into the biolog-
ical differences between the 2 subclasses of HCC, we gener-
ated 2 different gene lists by applying significance analysis of
microarrays.31 Gene list X represents the top 500 genes that
were differentially expressed between ST and all HCC tis-
sues. Gene list Y represents the top 500 genes that were
differentially expressed between HCCs in A and B clusters
(Fig. 4A and 4B). When gene expression patterns of all tis-
sues were compared together, 3 different patterns were ob-
served: X not Y (330 genes), X and Y (170 genes), and Y but
not X (330 genes). Genes in the X not Y category had uni-
form differences between all HCCs and STs regardless of
subclass A or B, representing common alterations of gene

expression in HCC. Enhanced expression of 26S protea-
some subunits such as PSMC4, PSME3, PSMD4, PSMD2,
and PSMB4 indicated an enhanced activation of wide-rang-
ing protein degradation inall HCCs. However, ubiquiti-
nation, a selective protein degradation pathway, was
only active in subclass A HCC (see Table 2). Genes in
the X and Y category display a subclass-specific gene
expression pattern. Although gene expression was al-
tered in all HCCs, a more pronounced alteration was
observed in subclass A. Expression of the G1/S phase
cell cycle regulator CDK4 was highest in subclass A ,
moderately enhanced in subclass B, and lowest in ST,
which agreed well with the more proliferative features
of subclass A. Enhanced expression of H2FAX—a his-
tone H2 variant involved in the chromosome double-
strand breaks response32—in subclass A might reflect
more chromosomal damage and/or instability in sub-
class A than in B. Additional reduction in the expres-
sion of liver-specific genes including the p450 family in
the poorer survival group (subclass A) shows that re-
duced liver function is indeed a bad prognostic indica-
tor for HCC patients.

Discussion
Prognostic modeling of patients with HCC at diagno-

sis that considers tumor stage, functional impairments of

Fig. 3. Gene expression patterns of 406 survival genes. (A) Hierarchical clustering of 89 HCC tumors with survival genes separated the tissues
into 2 main groups. The data are presented in as described in Fig. 1. The red and blue color cells at the bottom of dendrogram represent memberships
of cluster A and B, respectively, from Fig. 1B. (B) Relative expression of 213 HB genes that were more expressed in cluster B HCC tissues. HCC tissues
were ordered according to average expression level of 213 genes as indicated at the bottom of colored heat map. (C) Relative expression of 193
HA genes that were more expressed in cluster A HCC tissues. HCC tissues were ordered according to average expression level of 193 genes as
indicated at the bottom of colored heat map. (D) Relative expression of HIF1a, ENGL2, and downstream target genes of HIF1a. HCC tissues were
ordered according to average expression level of 193 genes as indicated.
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the liver, and the general condition of the patient can
provide valuable information and indicate therapy.4,10

However, increased surveillance and advances in image
technology have afforded earlier diagnosis of HCC. This

development presents a challenge with respect to prog-
nostic modeling of HCC, because the natural history of
early HCC is unknown.12 In addition, intermediate and
advanced HCC are quite heterogeneous,33 even though

Table 2. Summary of Selected Survival Genes

Gene Hazard Ratio P (Wald test)
P (Likelihood
Ratio test)

P
(t test, A vs. B) Unigene Description

Prothrombin activation
F10 0.718 .00093 .00136 3.63E-07 Hs.47913 Coagulation factor X
F12 0.713 .000064 8.39E-05 5.32E-15 Hs.1321 Coagulation factor XII (Hageman factor)
KNG 0.709 .000096 .000204 2.35E-15 Hs.77741 Klninogen
SERPINC1 0.774 .00026 .000303 3.49E-20 Hs.75599 Serine (or cysteine) proteinase inhibitor, clade C1
SERPING1 0.586 .00022 .000273 2.26E-12 Hs.151242 Serine (or cysteine) proteinase inhibitor, clade G1

Ubiquitination and sumoylation
UBE2D1 2.4 .00034 .000303 3.15E-12 Hs.129683 Ubiquitin-conjugating enzyme E2D 1
USP1 2.22 .00061 .000951 3.07E-06 Hs.35086 Ubiquitin specific protease 1
HSPC150 1.76 .00074 .00105 8.31E-08 Hs.5199 Similar to ubiquitin-conjugating enzyme
UBA2 2.43 7.40E-07 1.17E-06 9.28E-12 Hs.4311 SUMO-1 activating enzyme subunit 2
RBX1 2.32 .00017 .00014 3.39E-07 Hs.279919 Ring-box 1
RWDD1 2.34 5.30E-06 5.52E-05 .002542 Hs.22679 RWD domain containing 1
SMT3H2 3.28 .0003 .000255 1.77E-08 Hs.180139 SUMO-2

Histones
HIST1H4A 1.97 .000049 3.98E-05 4.51E-11 Hs.248178 Histone 1, H4a
HIST1H4C 1.69 .00051 .000306 1.91E-10 Hs.46423 Histone 1, H4c
HIST2H4 2.04 .00013 .000141 6.44E-11 Hs.55466 Histone 2, H4
HRMT1L2 2.31 .00065 .00087 3.38E-14 Hs.20521 HMT1 hnRNP methyltransferase-like 2
CRFG 3.77 .000035 2.74E-05 6.51E-12 Hs.215766 G protein-binding protein CRFG
HDAC2 2.64 .000015 2.42E-05 4.79E-12 Hs.3352 Histone deacetylase 2
SLBP 2.93 .00039 .000586 .001256 Hs.75257 Stem-loop (histone) binding protein

Apoptosis
PTMA 3.75 .000038 3.96E-05 7.89E-08 Hs.250655 Prothymosin, alpha
SET 2.2 .0007 .0011 2.65E-07 Hs.145279 SET translocation
YWHAB 3.48 .00046 .000408 5.25E-06 Hs.182238 14-3-3 beta polypeptide
YWHAH 2.44 .00063 .000347 1.18E-08 Hs.349530 14-3-3 eta polypeptide
YWHAQ 2.31 .00085 .000656 2.81E-11 Hs.74405 14-3-3 theta polypeptide
NALP2 2.91 .00035 .000164 1.77E-11 Hs.6844 Neuronal apoptosis inhibitor protein 2
PDCD5 3.04 .000011 1.41E-05 6.25E-06 Hs.166468 Programmed cell death 5
P8 0.525 .00073 .000704 .000309 Hs.424279 p8 Protein (candidate of metastasis 1)
IER3 1.74 .00038 .000295 8.43E-11 Hs.76095 Immediate early response 3

Cell cycle regulation and cell proliferation
PCNA 1.92 .00022 .000301 3.57E-06 Hs.78996 Proliferating cell nuclear antigen
CDK4 2.09 .00085 .000836 3.78E-12 Hs.95577 Cyclin-dependent kinase 4
TOPBP1 4.24 .0001 6.85E-05 3.57E-08 Hs.91417 Topoisomerase (DNA) II binding protein
CGR11 0.422 .00038 .00029 1.57E-06 Hs.159525 Cell growth regulatory with EF-hand domain
BCAT1 1.58 .000081 .000254 4.35E-08 Hs.317432 Branched chain aminotransferase 1, cytosolic
CCNB1 2.19 .000058 7.66E-05 6.66E-07 Hs.23960 Cyclin B1
CKS2 1.77 .00011 .000115 9.41E-10 Hs.83758 CDC28 protein kinase regulatory subunit 2
DLG7 2.69 .000017 6.12E-05 4.3E-07 Hs.77695 Discs, large homolog 7 (Drosophila)
NAP1L1 1.98 .000074 .000111 6.42E-10 Hs.302649 Nucleosome assembly protein 1-like 1
CCNA2 1.97 .00015 .000335 8.11E-10 Hs.85137 Cyclin A2
MAPRE1 2.68 .000014 9.43E-06 3.29E-13 Hs.234279 Microtubule-associated protein, RP/EB family, member 1
TTK 1.66 .00095 .00128 1.08E-10 Hs.169840 TTK protein kinase
BUB3 2.69 .00083 .00104 8.13E-09 Hs.40323 Budding uninhibited by benzimidazoles 3 homolog
CENPF 1.71 .00047 .000593 4.53E-07 Hs.77204 Centromere protein F, 350/400ka
KNTC1 2.35 .00012 .000204 4.47E-05 Hs.333355 Kinetochore associated 1
NPM1 2.14 .00025 8.52E-05 3.49E-06 Hs.355719 Nucleophosmin
MCM2 2.03 .00099 .00119 8.1E-08 Hs.57101 Minichromosome maintenance deficient 2
MCM6 1.88 .00094 .000852 2.3E-10 Hs.155462 Minichromosome maintenance deficient 6
MCM7 2.41 .00047 .000434 2.6E-09 Hs.77152 Minichromosome maintenance deficient 7

Regulation of HIF1a
HIF1A 1.69 .00022 .000298 1.19E-07 Hs.197540 Hypoxia-inducible factor 1, alpha
EGLN2 0.461 .00018 .000256 1.1E-08 Hs.324277 egl nine homolog 2
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the natural history and prognostic factors are well de-
fined.12 Therefore, it is necessary to establish robust meth-
ods capable of evaluating the prognosis of patients
diagnosed at the early, intermediate, and late stages of
HCC. As a first step in the development of a molecular
prognostic evaluation, we have used gene expression pro-
filing technology and unsupervised and supervised learn-
ing methods to successfully predict survival of HCC
patients.

We applied three independent but complementary ap-
proaches for data analysis to uncover subclasses of HCC
and the underlying biological differences between the
subclasses. First, unsupervised classification methods
based solely on gene expression patterns were applied.
Hierarchical clustering of the data as well as multidimen-
sional scaling revealed two subclasses of HCC strongly
associated with the length of patients’ survival. The dif-
ferences in gene expression are quite robust as illustrated
by the fact that the poorer survival group (subclass A) was
successfully separated from the better survival group (sub-
class B) in the training data set as well as in the validation
data set when 5 different statistical methods for prediction
were applied (see Fig. 2). The presence of two extreme
subgroups in AFP� patients was unexpected and proba-
bly accounts for the insufficient predictive power when
AFP was used as a sole prognostic indicator.4,10

Second, a univariate regression model was used to
identify individual genes whose expression is highly cor-
related with length of survival. Application of survival
genes for subclass prediction was highly accurate, as illus-
trated by the fact that averaged gene expression indices
were sufficient to segregate the 2 subclasses even without
the use of sophisticated prediction models. Also, informa-
tion obtained from knowledge-based annotation of the
406 survival genes provided insight into the underlying
biological differences between the 2 subclasses of HCC.
Although quantitative measurement of cell proliferation
and apoptotic rates in both subclasses strongly support the
long-established notion that imbalance between cell pro-
liferation and cell death is the primary hallmark of tu-
mors34 and provided the best quantitative separation of
the 2 subclasses, many other issues were also highlighted.

The ubiquitin system is often deregulated in cancers.35

In HCC, the degree of ubiquitination is highly correlated
with cell proliferation and survival of patients and has also
been proposed as a possible predictive marker for recur-
rence of human HCC.36 In addition, PSMD10/
Gankyrin, a subunit of the 26S proteasome that
accelerates the degradation of retinoblastoma, is overex-
pressed in HCC.37 Also, enhanced activation of ubiq-
uitin-dependent protein degradation may account for
deregulation of cell cycle control and faster cell prolifera-

Fig. 4. Distinctive gene expressions of HCC and ST. (A) Venn diagram
of genes selected via significance analysis of microarrays. X represents
genes differentially expressed between surrounding tissues and all HCC
tissues. Y represents genes differentially expressed between cluster A
HCC and cluster B HCC tissues. One hundred seventy genes were shared
in 2 different gene lists. (B) Purple and red bars at the left side of the
heat map represent X and Y genes, respectively. Pink bars at the right
side of heat map represent survival genes. Colored bars at the top of heat
map represent tissues as indicated. HCC, hepatocellular carcinoma; ST,
surrounding tissue.
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tion in the poor survival group (subclass A). Therefore,
deregulated components in ubiquitin-mediated protein
degradation may provide attractive therapeutic targets for
novel HCC treatment modalities.

The third approach involved the analysis of overall
similarity and dissimilarity of gene expression between all
the HCCs, subclasses A and B, and STs (see Fig. 4). Al-
though the 2 subclasses of HCC may be viewed as distinc-
tive biological entities, they still share significant overall
similarity of gene expression when compared with ST.
This may indicate that subclass A HCC accumulated ad-
ditional oncogenic alterations of gene expression on top of
a common HCC gene expression signature, thereby pro-
viding a more favorable environment for tumor cell
growth. However, we cannot rule out the possibility that
different mechanisms may contribute to the development
of subclass A and B following exposure to different etio-
logical factors, and the gene expression signature may re-
flect that etiological “footprint.” This scenario is unlikely,
however, because the great majority of our HCC cases
were associated with hepatitis B virus. Alternatively, the
cell of origin of a tumor can be important in determining
the clinical outcome, as shown for diffuse large B cell
lymphoma.14 It is therefore possible that the 2 subclasses
of HCC might represent different cellular origins (i.e.,
hepatic stem cells vs. hepatocytes) of the tumors.

Comparative analysis of our data and earlier studies
demonstrated good concordance of the data despite dif-
ferences in patient populations and technology platforms
(see supplementary notes). It strongly supports the gener-
ality of our findings that the subclasses of HCC might
represent distinct disease entities. Also, the observation
that genes associated with early recurrence and intrahe-
patic metastasis of HCC19,20 did not discriminate be-
tween the subclass A and B suggests that the information
(at least from a gene expression standpoint) embedded in
these important processes is not sufficient to predict sur-
vival. It is therefore likely that the additional information
provided by the survival genes (only 2 of the genes asso-
ciated with intrahepatic metastasis were among these) is
needed for effectively predicting survival. This is of con-
siderable importance, because in a recent study on sur-
vival of HCC patients it was demonstrated that HCC was
the prime cause of death in patients with compensated
cirrhosis.38 However, considerable molecular heterogene-
ity still exists within each HCC subclass, as evidenced by
quantitative differences in survival gene expression (see
Fig. 3B and 3C) and the small fraction of patients that are
frequently misclassified in the prediction models. It is
therefore probable that more subclasses of HCC might
emerge when gene expression data from more HCC pa-
tients become available.

The severity of HCC and the lack of good diagnostic
markers and treatment strategies have rendered the dis-
ease a major challenge. Systematic analysis of gene expres-
sion patterns provides an insight into the biology and
pathogenesis of HCC. Our results indicate that HCC
prognosis can be readily predicted from the gene expres-
sion profiles of the primary tumors. Because the microar-
ray-based measurement of gene expression reflects the
abundance of expressed messenger RNA and proteins in
the HCC as confirmed by quantitative reverse-transcrip-
tase polymerase chain reaction and immunohistochemi-
cal staining (Supplementary Figs. 6 and 7), a limited set of
quantitative reverse-transcriptase polymerase chain reac-
tion and/or immunohistochemical staining assays may be
sufficient to predict the prognosis of patients at the time
of diagnosis; however, a prospective study is needed to
confirm this proposal. Nevertheless, the unique molecular
characteristics of each subclass of HCC uncovered by a
genome-wide survey of gene expression provide insight
into the tumor biology of HCC and offer the opportunity
for new therapeutic strategies. SET and PTMA are of
particular interest for potential therapeutic targets be-
cause of their multitasking features. Even if a curative
therapy for HCC patients cannot be offered at this stage,
it may be possible to identify therapeutic targets that can
slow the course of disease progression. For example, small
molecules that inhibit PTMA and HIF1a activities are
already available24,39 and may provide opportunities to
alter the course of HCC progression in both subclass A
and B.
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